Numerical results indicate a half-filling SU(4) Kondo state in carbon nanotubes
نویسندگان
چکیده
منابع مشابه
SU(4) Kondo effect in carbon nanotubes.
We investigate theoretically the nonequilibrium transport properties of carbon nanotube quantum dots. Owing to the two-dimensional band structure of graphene, a double orbital degeneracy plays the role of a pseudospin, which is entangled with the spin. Quantum fluctuations between these 4 degrees of freedom result in an SU(4) Kondo effect at low temperatures. This exotic Kondo effect manifests ...
متن کاملGiant thermopower in carbon nanotubes: A one-dimensional Kondo system
The electrical transport properties of single-wall carbon nanotubes are shown to be strongly influenced by the presence of transition-metal impurities derived from the catalyst introduced to stimulate their growth. Data on thermoelectric power and electrical resistance in the temperature range 10–400 K were obtained on a series of samples prepared using M -Y catalysts ~M5Cr, Mn, Co, Fe, Ni!. Th...
متن کاملFilling of carbon nanotubes and nanofibres
The reliable production of carbon nanotubes and nanofibres is a relatively new development, and due to their unique structure, there has been much interest in filling their hollow interiors. In this review, we provide an overview of the most common approaches for filling these carbon nanostructures. We highlight that filled carbon nanostructures are an emerging material for biomedical applicati...
متن کاملA ug 1 99 8 The Kondo - Hubbard model at half - filling
We have analyzed the antiferromagnetic (J > 0) Kondo-Hubbard lattice with the band at half-filling by means of a perturbative approach in the strong coupling limit, the small parameter is an arbitrary tight-binding band. The results are valid for any band shape and any dimension. We have obtained the energies of elementary charge and spin excitations as well as the magnetic correlations in orde...
متن کاملQuantum phase transition in one dimensional extended Kondo lattice model away from half filling
We study one dimensional extended Kondo lattice model, described by the t − J Hamiltonian for conduction electrons away from half filling and the Heisenberg Hamiltonian for localized spins at half filling. Following Shankar,[1] we find an effective field theory for this model, where doped holes are represented by massless Dirac fermions (holons) and spin excitations are fractionalized into rela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2007
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.75.045406